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A Brief Introduction To 
Calorimetry
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Calorimeters are used everywhere 
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Calorimeters measure particle 
energies by total absorption
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Why Calorimeters? 
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• Momentum (tracker) and energy (calorimeter) resolutions:

• Measure charged and neutral particle (and ‘missing’) energy.
• Fast signal generation.

Tracker (momentum)

Calorimeter (energy)



Muon Energy Loss 
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Muon momentum
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Electron / Positron Energy Loss 
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Photon Energy Loss 
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Anatomy of an electron / photon 
cascade
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electromagnetic: 
ionization, excitation,  
photo effect, scatteringρM

Calorimeter Signal ~ Deposited Energy
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Fig. 1: The energy domains in which photoelectric effect, Compton scattering and pair production are the most likely
processes to occur, as a function of the Z of the absorber material.

Fig. 2: The energy deposited as a function of depth for 1, 10, 100 and 100 GeV electron showers developing in a block
of copper. In order to compare the shower profiles, the integrals of these curves have been normalized to the same
value (a). The radial distributions of the energy deposited by 10 GeV electron showers in copper, at various depths (b).
Results of EGS4 calculations.

The lateral development of em showers is governed by two types of processes:

1. Electrons and positrons move away from the shower axis because of multiple scattering.

2. Photons and electrons produced in isotropic processes (Compton scattering, photoelectric effect)
move away from the shower axis.

The first process dominates in the early stages of the shower development, the second one beyond the
shower maximum. Both processes have their own characteristic, exponential scale. The two components

c� 2008 Università degli Studi di Pavia

Longitudinal Cascade Development 
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Cascade depth ~ln(E) makes calorimetry feasible!



Basic Calorimeter Types 
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Homogeneous

PHENIX ECAL: Pb / Scintillator

e z

CMS ECAL: PbWO4

Sampling



γ

γ

absorber

π
π , η  

π , p

+

+

0

e+

e

e+

e

γ

γ

n

nucleus

Anatomy of a hadronic cascade 
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hadronic: ionization,  
invisible (binding, recoil)

λ 

electromagnetic: 
ionization, excitation,  
photo effect, scattering

➙ Very large fluctuations from one cascade to another.



Calorimeter response to pions 
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Fig. 16: Relation between the calorimeter response ratio to em and non-em energy deposits, e/h, and the measured
e/� signal ratios.

leading to e/h values larger than 1, it turns out to be possible to construct calorimeters with e/h � 1.
Calorimeters with e/h > 1, e/h = 1 and e/h < 1 are called undercompensating, compensating and over-
compensating, respectively. Most calori-meters used in practice are undercompensating, with typical e/h
values between 1.5 and 2.0.

Equation 2 also quantifies the hadronic signal non-linearity. Since ⇥fem⇤ increases with energy, the pion
response increases for undercompensating calorimeters, and decreases for overcompensating calorimeters.
This is clearly observed in practice (Figure 17). Only compensating calorimeters are linear. This is one of
many advantages of compensation.

Fig. 17: The response to pions as a function of energy for three calorimeters with different e/h values. All data are
normalized to the response for 10 GeV ��.

c⇥ 2008 Università degli Studi di Pavia



1 prototype (1 m3)
• 38 sensitive layers (scintillator, 5 mm)  
         + absorber (steel, 2 cm)

• 216 scintillator tiles (3x3 ... 12x12 cm2)
• 1 photodetector (SiPM, 1x1 mm2)

CALICE Analog Hadron Calorimeter 
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~ 8 000 read-out channels



The Dawn of 3D Imaging 
Calorimetry
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µ - data e - data π- data



EIC PbWO4 EMCAL in Geant4 
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ePHENIX Calorimeters 
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HCAL
Scintillator / Steel

ECAL
Scintillator / Tungsten

ECAL
Lead Tungstate



Summary 
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• Energy measurements with calorimeters play an 
important role in various fields.  

• Basic principle: Generated signal ~ deposited Energy.  

• Calorimetry for hadrons more challenging than for 
electrons / photons because of

✦ large fluctuations
✦ ‘invisible’ energy depositions 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